
Submission to International Journal of Control, Automation, and Systems 
 

 

1

An Adaptive Fuzzy Sliding-Mode Controller Design for Walking Control with 
Functional Electrical Stimulation: A Computer Simulation Study 

 
Vahab Nekoukar, and Abbas Erfanian 

 
Abstract: A major challenge to developing neuroprostheses for walking and to widespread acceptance 
of these walking systems is the design of a robust control strategy that provides satisfactory tracking 
performance, to be robust against time-varying properties of neuromusculoskeletal dynamics, day-to-
day variations, muscle fatigue, and external disturbances, and to be easy to apply without requiring 
offline identification during different experiment sessions. The lower extremities of human walking are 
a highly nonlinear, highly time-varying, multi-actuator, multi-segment with highly inter-segment 
coupling, and inherently unstable system.  Moreover, there always exist severe structured and 
unstructured uncertainties such as spasticity, muscle fatigue, external disturbances, and unmodeled 
dynamics. Robust control design for such nonlinear uncertain multi-input multi-output system still 
remains as an open problem. In this paper we present a novel robust control strategy that is based on 
combination of adaptive fuzzy control with a new well-defined sliding-mode control (SMC) with 
strong reachability for control of walking in paraplegic subjects. Based on the universal approximation 
theorem, fuzzy logic systems are employed to approximate the neuromusculoskeletal dynamics and an 
adaptive fuzzy controller is designed by using Lyapunov stability theory to compensate for 
approximation errors. The proposed control strategy has been evaluated on a planar model of bipedal 
locomotion as a virtual patient. The results indicate that the proposed strategy provides accurate 
tracking control with fast convergence during different conditions of operation, and could generate 
control signals to compensate the effects of muscle fatigue, system parameter variations, and external 
disturbances. Interesting observation is that the controller generates muscle excitation that mimic those 
observed during normal walking. 
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1. INTRODUCTION 
 
For over three decades, many research groups have 

shown that limited crutch- or walker-assisted walking 
can be restored in subjects with spinal cord injuries by 
means of functional neuromuscular stimulation (FNS) 
systems [1]. These systems are open-loop systems in 
which the stimulation parameters are prescribed open-
loop through a trial-and-error process. In FNS systems, 
sequences of current pulses excite the intact peripheral 
axon, which in turn contract paralyzed muscles. By 
changing the pulse width, pulse amplitude, or the pulse 
frequency, the level of contraction can be altered to 
perform a specific task. To provide functional use of the 
paralyzed limbs, an appropriate electrical stimulation 
pattern should be delivered to a set of muscles.  

A major impediment to stimulating the paralyzed 

neuromuscular systems and determining the stimulation 
pattern has been the highly non-linear, time-varying 
properties of electrically stimulated muscle, muscle 
fatigue, spasticity, and day-to-day variations which limit 
the utility of  pre-specified stimulation patterns and 
open-loop FNS control systems. 

To deal with these problems, many control strategies 
have been developed and reported in literature including 
fixed-parameter feedback controller [2], [3], adaptive 
feedback techniques [4]-[7], fixed-parameter 
feedforward [8], [9], adaptive feedforward [9]-[14], and 
combination of feedforward and feedback control 
techniques [8], [9], [10], [15]. However, despite a great 
deal of research in this area, only a few studies have been 
devoted to closed-loop control of walking with 
functional electrical stimulation [16]-[18]. Popović et al. 
[16], Anderson and Panty [17], and Thelen and Anderson 
[18] used optimal control method to determine the 
muscle activations that, when input into a forward 
dynamic musculoskeletal model, produce the desired 
trajectory of human walking. The model used by Popović 
et al. consisted of one leg and trunk. The leg was 
modeled as a planar, two segmental linkage of rigid 
bodies. The model of musculoskeletal was reduced to a 
double pendulum with a moving hanging point which 
interfaces with the rest of the body and the ground. The 
double pendulum representing the leg allowed knee and 
hip extension and flexion within physiological limits. 
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The leg was driven by two pairs of monoarticular 
muscles acting around the hip and knee joints and did not 
include active ankle and phalangeal joints. The 
neuromusculoskeletal models of the body used by 
Anderson and panty [16] and Thelen and Anderson [17] 
to simulate normal walking on level ground are more 
complicated models with more details. The body was 
modeled as an 8-segment with a 21-degree-of-freedom 
articulated linkage actuated by 92 Hill-type muscle–
tendon units [17]. 

Optimal control is not suitable for online control of 
walking. It can be used for offline analysis of excitation 
patterns required to produce a trajectory and estimation 
of the contribution of muscles to movement. To 
implement the optimal control for walking, an accurate 
model of multilink neuromusculoskeletal system is 
required. Due to time-varying property of 
neuromusculoskeletal system, subject-to-subject 
variations, un-modeled dynamics, model uncertainties, 
and disturbances, determining the muscle activation 
patterns using optimal control is much less efficient for 
online control of walking in paraplegic subjects. 

An effective approach to deal with the uncertainties is 
adaptive control. Adaptive control, by online tuning the 
parameters (of either the plant or the controller—
corresponding to indirect, or direct adaptive control), can 
deal with uncertainties, but generally, suffers from the 
disadvantage of being able to achieve only asymptotical 
convergence of the tracking error to zero. Several issues, 
such as transient performance, un-modeled dynamics, 
disturbance, the amount of offline training required, the 
tradeoff between the persistent excitation of signals for 
correct identification and the steady system response for 
control performance, the model convergence and system 
stability issues in real applications, and nonlinearity in 
parameters, often complicate the adaptive approach [19]-
[22].  

A useful and powerful control scheme to deal with the 
uncertainties, nonlinearities, and bounded external 
disturbances is the sliding mode control (SMC) [23]. In 
robust control designs, a fixed control law based on a 
priori information on the uncertainties is designed to 
compensate for their effects, and exponential 
convergence (finite time) of the tracking error to a 
(small) ball centered at the origin is obtained. Robust 
control has some advantages over the adaptive control, 
such as its ability to deal with disturbances, quickly 
varying parameters, and un-modeled dynamics [23]. 
Nevertheless, the SMC suffers from the high frequency 
oscillations in the control input, which called 
"chattering" [24], [25]. The chattering caused by high-
frequency switching control activity is highly 
undesirable because it leads to low control accuracy and 
may excite un-modeled high frequency plant dynamics 
which could result in unpredictable instability [24].  

In previous work [26], we designed a control 
methodology which is based on synergistic combination 
of two artificial neural networks with sliding mode 
control (SMC) for control of knee-joint angle with 
quadriceps muscle stimulation. Although the controller 

provides excellent tracking performance with no 
chattering for single muscle group stimulation, the online 
computation burden to update the parameters of neural 
networks is not appropriate for multi-actuator and multi-
joint movement. In [27], we presented a robust control 
strategy resulting in a simpler design for control of the 
ankle-joint angle with stimulation of ankle dorsiflexor 
and plantarflexor muscles. However, both controllers are 
based on offline identification of the muscle-joint 
dynamics. This causes the method to be impractical for 
online control of human walking. Due to the inherent 
instability of human walking, identification of its model 
is very difficult. 

In this paper, we present a novel robust control system 
that is based on SMC and fuzzy logic system, referred to 
as adaptive fuzzy sliding mode control (AFSMC), for 
online control of walking, while the dynamics of walking 
is identified online without requiring any offline 
calibration. This new controller takes advantages of the 
fast dynamic behavior (i.e., strong sliding reachability) 
and robustness of the sliding mode control while does 
not require any offline identification of the plant being 
controlled. 

 
2. PROBLEM STATEMENT 

 
Sliding mode control is one of the effective nonlinear 

robust control approaches since it provides system 
dynamics with an invariance property to uncertainties 
and external disturbances provided matching conditions 
are satisfied. To implement the SMC, the plant being 
controlled should be first presented in a standard 
canonical form. Identification of the canonical model for 
multiple-input multiple-output (MIMO) nonlinear 
systems, and in particular for inherently unstable systems 
is very difficult and very different from those for SISO 
systems. 

In this paper, based on the universal approximation 
theorem [28], the fuzzy logic system is used to 
approximate the unknown multiple-input multiple-output 
(MIMO) nonlinear system (i.e., neuromusculoskeletal 
system) and designed adaptive laws based on Lyapunov 
stability theory for online updating the model parameters. 

 In recent years, based on the universal approximation 
theorem, there has been much research on the design of 
sliding-mode controller based on fuzzy logic system for 
unknown single-input–single-output (SISO) nonlinear 
systems [29]–[32], single-input–multiple-output (SIMO) 
nonlinear systems [33], and MIMO nonlinear systems 
[34]–[39]. Zheng et al. [36] proposed a fuzzy SMC based 
on Takagi–Sugeno fuzzy system for control of MIMO 
nonlinear systems. The basic idea in this approach is first 
to decompose the nonlinear dynamic system into N 
fuzzy-based linear state-space subsystems in the form: 

)()( tt ii uBxAx += , where nt R∈)(x is the vector of state 

variables, nt R∈)(u is the vector of control inputs; and 

iA and iB are constant matrices. Next, the overall fuzzy 

model is achieved by fuzzy aggregation of each 
individual model. However, the assumptions which are 
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made on linear subsystems limit the application of the 
method to plants that are complex and ill-defined. 
Hwang [39] has also introduced a Takagi–Sugeno based 
adaptive fuzzy SMC. To track a trajectory dominant by a 
specific frequency, the reference linear models with 
desired amplitude and phase features were established by 
the same fuzzy sets of the system rule. However, the 
main difficulty with this approach is the establishing a 
set of reference linear models for a physical nonlinear 
dynamical system (e.g., neuromusculoskeletal system). 
To improve the reaching dynamics during reaching phase 
of SMC, Tong and Li [37] proposed a fuzzy adaptive 
SMC by choosing a strong sliding reachability condition. 
To implement the SMC, the MIMO nonlinear system 
should be presented in controllability canonical form 

,)()()( uxgxfy ⋅+=n  where x  is the overall state vector, 
pR∈u  the control input vector, pR∈y  the system 

output vector, p)( R∈xf  and pp×∈ R)(xg  are unknown 

nonlinear continuous functions. To meet control 
objectives in sliding mode, it is required that )(xg  to be 

regular. Since the nonlinear functions )(xf  and  )(xg  

are unknown, Tong and Li [37] used two fuzzy systems 
),(ˆ

fθxf  and  ),,(ˆ gθxg  to approximate the nonlinear 

functions )(xf  and )(xg  respectively. fθ  and ,gθ  

are the adjustable parameters of the approximations.  
One can notice that the above controller is not well-
defined if ),,(ˆ gθxg  is not regular.  

All the above mentioned works [29], [30], [36], [37], 
[38] do not guarantee the estimate ),,(ˆ gθxg  to be regular. 

To solve the controller regularity problem, we use the 
method proposed in [40], to develop a new well-defined 
SMC with strong sliding reachability. 
 

3. CONTROL DESIGN 
 

3.1. Sliding mode control with strong sliding reachability 
Consider the following MIMO nonlinear systems 

represented by 

uxGxFx ⋅+= )()()(n                (1) 

where mT-n
mm

m, x, xxx R∈= ] , , , ,[ )1(1)-(n
11

1 x  is a 

vector of states which are assumed to be measurable, 

,][ 1
mT

m, u,  u R∈= u  is the control input vector, F(x) 

and G(x)  are unknown nonlinear but continuous 

functions defined as  
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Assumption 1. The matrix G(x)  is positive definite, 

then it exists R∈> 00  ,0 δδ  such that: mIG(x) 0δ≥ . 

Assumption 2. The desired trajectory 
, m, itxdi 1  ,)( = , is a known bounded function of time 

with bounded known derivatives and )(txdi  is assumed 

to be ni-times differentiable. 
To implement SMC, the sliding surface is defined as 

,m, ite
dt

d
ts i

n
ii

i 1         ),()()( 1 =+= −λ     (2) 

where )()()( txtxte idii −= . Using (1), differentiation of 

(2) with respect to time can be written as 
                                                      

uxGxFvs ⋅−−= )()(             (3) 

where [ ])()(1 ts, , ts m =s  and [ ]m, v, v 1=v  with each 

variable iv  defined as  
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A strong sliding reachability condition is defined as 
[41]: 

)sgn()()( 10 sKsKs −−= tt         (6) 

with 0K  being a positive-definite matrix, 

0,)k , ,( 1m111 >= kdiagK and  [ ] .)sgn(),....,sgn()sgn( 1
T

mss=s  
It should be noted that this kind of reachability will force 

0)( →ts  exponentially or in finite time. Therefore,  

)(tei  and all its derivatives up to 1−in converges to 

zero exponentially or in finite time. By virtue of (3) and 
(6), the equivalent control law can be obtained as: 

( ).)sgn()()( 10
1 sKsKvxFxGu +++−= −

eq    (7) 

Due to the fact that system functions F(x)  and G(x)  

are unknown in practical systems, the control law (7) is 
usually difficult to be obtained. Here, we use fuzzy logic 
system to approximate the nonlinear unknown functions 
and design an adaptive fuzzy controller by using 
Lyapunov stability theory to compensate for 
approximation errors. 

 
3.2. Adaptive Fuzzy Sliding Mode Control 

Based on the universal approximation theorem [26], 
fuzzy logic systems can be used to approximate the 
vector functions F(x)  and the matrix function G(x)  in 

(7).  Let )θ(xF f,ˆ  and )θ(xG g,ˆ  be the fuzzy 

approximation of the vector functions F(x)  and the 

matrix function G(x)  in (7), respectively. So, (7) can be 

written as 

( ).)sgn(),(ˆ),(ˆ
10

1 sKsKvθxFθxGu +++−= −
fgeq    (8) 

There is a major problem in using (8) as an equivalent 
control law when matrix )θ(xG g,ˆ  is singular. There is 

no guarantee that )θ(xG g,ˆ  remains regular during 

estimating. To solve this problem, we use the regularized 
inverse of )θ(xG g,ˆ  defined as [40] 
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0

1 )],(ˆ),(ˆ)[,(ˆ,ˆ −− += g
T

gmg
T

g θxGθxGIθxG)θ(xG ε   (9) 

where 0ε  is a small positive constant and mI  is mm×  

identity matrix. The regularized inverse (9) is well-
defined even when )θ(xG g,ˆ  is singular, and therefore 

the control law defined in (10) is always well-defined. 
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Fuzzy Approximator 
To implement the SMC (10), the nonlinear functions 

F(x)  and G(x)  should be estimated. In this work, we 

use )1( +mm  fuzzy systems to approximate these 

nonlinear functions. The fuzzy system uses the fuzzy IF-
THEN rules to perform a mapping from an input vector 

nT
nxxx R∈= ],...,[ 21x  to an output R∈y . The rth fuzzy 

rule is written as  
r
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where r

iA  and r
iB  are fuzzy sets with membership 

functions )( iA
xr

i
μ  and ),(yiB

μ  respectively, and x 

belongs to a compact set. By using the product-inference 
rule, singleton fuzzifier, and center-average defuzzifier, 
the output of FLS can be expressed as 
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where rn  is the number of total fuzzy rules, iy~  is the 

point at which ,1)~( =i
B

yiμ  )( jA
xi

j
μ  is the membership 

function of the fuzzy variable jx  characterized by 

Gaussian function, [ ]Tnryyy ~,~,~ 21 =θ is an adjustable 

parameter vector, and [ ]Tnrψψψψ ,, 21= is a fuzzy 

basis vector, where iψ  is defined as  
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By using the introduced fuzzy systems in (11), 
approximation of functions )(xif  and )(xikg  can be 

obtained as follows: 

, m, iψf
iif f

T
i 1        ,)(ˆ == (x)x θ      (13) 

, m, i, kψg
ikikg g

T
ik 1    ,)(ˆ == (x)x θ     (14) 

where )(x
if

θ  and )(x
ikgθ  are adjustable parameter 

vectors. There are optimal parameters *
ifθ  and *

ikgθ  

such that: 
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Now we can define minimum estimation errors as: 

),(ˆ)( *
fθxFxFε −=f           (17) 

),(ˆ)( *
gθxGxGε −=g          (18) 

We assumed that minimum estimation errors are 
bounded for all xD∈x : 

xD    ,)(   ,)( ∈∀≤≤ xxεxε gf gf εε      (19) 

that fε  and gε  are positive constant.  

 
Adaptation Laws 
To approximate the uncertain nonlinear functions 

)(xif  and )(xikg  in (1), adaptive update laws to adjust 

the parameter vectors in (13) and (14) need to be 
developed. The update laws are chosen as 

ifff sψ
iii

)(xηθ −=           (20) 

kikikik eqiggg usψ )(xηθ −=         (21) 

where 0>
ifη  and .0>

ikgη  

Also, a corrective controller is defined to guarantee the 
stability of the closed-loop control system and 
compensate the approximation errors.  Under 
assumptions 1 and 2, a control input is chosen as   

ceq uuu +=             (22) 

where equ  is given in (10), and cu  is defined as 

2
0

0 )(

s

uuss
u

δ

++
=

eqgf
T

c

εε
                  (23) 

( ).)sgn()(ˆ

)](ˆ)(ˆ[

10

1
000

sKsKvxF

xGxGIu

+++−

+= −T
mεε

      (24) 

 
 Theorem 1: Consider the MIMO system (1) with 
nonlinear functions F(x)  and G(x)  which are 

approximated by (13) and (14).  Suppose that 
assumptions 1 and 2 are satisfied, the control input is 
chosen as (22), and adaptation laws are selected as (20) 
and (21). Then, 

• All signals in the closed-loop system are bounded. 
• The tracking errors and their derivatives decrease 

asymptotically to zero. 
Proof: Given in Appendix A. 
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Fig. 1. Model of the body showing the definition of 
angles and torques considered. 

 
4. MODEL OF HUMAN WALKING 

 
A planar model of bipedal locomotion [16] is 

considered here as a virtual patient. The leg is modeled 
as a planar, two segmental linkage of rigid bodies as 
thigh and shank. It is assumed that the leg is driven by 
two pairs of monoarticular muscles acting around the hip 
and knee joints (Fig. 1). Ankle and phalangeal joints are 
not included in the model because it is assumed that the 
subject will wear ankle-foot orthoses during the walking.  
The head, arms, and torso are lumped into a single rigid 
body as the upper extremity. The upper body and one leg 
are replaced by the torque contributing to the total 
torques applied at the hip joint and knee joint of the 
second leg. The interaction between the foot and the 
floor is modelled as a rigid contact and the effects of 
ground reaction are included at the base. We treated 
ground reaction forces as inputs to the simulation. Thus, 
the model simulated here is reduced to a double 
pendulum with a moving hanging point which interfaces 
with the rest of the body and the ground. Further details 
were described in [16]. 

The following describes the equation of motion of the 
musculoskeletal system: 

)()()()( tttt fd vττGxCxM +=+++       (25) 

where T
HK xxt ] [)( =x  and T

HK xxt ] [)(  =x  are the 

vector of generalized coordinates and velocities  (i.e., 
joint angles, angular velocities), respectively; 

222: ×→ RRM  is the inertia matrix, 2222: ×→× RRRC  
is the generalized coriolis and centrifugal matrix, 

22: RR →G  is a vector of gravity, T
fdTfdSfd ] [ ττ=τ  is 

a vector of ground reaction torque and torque that is 
produced by the upper extremity weight, )(tv  is a 

white-noise process presenting the lumped time-varying 
process uncertainty, and T

TSt ] [)( ττ=τ  is a vector  of 

torques acting at the shank and thigh segments defined 
by 
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where )(tf
iτ  and )(te

iτ  are the flexor and extensor 
torques, respectively, )(tr

iτ  is the resistive torque 

produced by passive tissues crossing the joints, and )(tiτ  

is the torque acting at the hip and knee joints. The model 
of electrically stimulated muscle used in this study 
included the neural activation dynamics and 
multiplicative nonlinear torque-angle and torque-velocity 
scaling factors [16], [42] as 
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where Kx  and Hx  are the knee and hip joint angles, 

respectively. The angles 0Kx  and 0Hx  are the neutral 

positions where the moments are zero. The second order 
polynomial in (27) represents the relationships between 
joint angle and joint torque. The normalized joint torques 
versus joint angular velocities are determined by [16]: 
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The variables  j
ia  are the activation of the extensor and 

flexor muscles and given by [42]: 
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where the parameters actτ  and deactτ  are time 

constants for activation and deactivation, respectively. 
The values of 20 and 60 ms were adopted for activation 
and deactivation, respectively. The variables j

iu  are the 

normalized levels of stimulation for the muscles. The 
resistive torques, ),(tr

iτ  are given by [16]: 
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r
K

xdedxdedxdxxd

xdedxdedxdxxd

 26
25

24
2322021

 16
15

14
1312011

)(

)(

−++−=

−++−=





τ

τ (30) 

All of the muscles flexing the joint are represented as a 
single flexor muscle, and all of the muscles extending the 
joint as a single extensor muscle. Further details were 
described in [16], [42]-[44]. 
The set of parameters ),2,1,0( =kc j

ik   ,)4,3,2,1( =kbik and 

)6,...,1( =kdik  are taken from [16], [42]. The lumped 

process uncertainty, ),(tv  is generated by passing a 

white noise with zero mean and variance 2σ  through a 
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Butterworth lowpass digital filter with a cutoff frequency 
of ωc = 5 Hz. The standard deviation was selected to be 
±20% of the peak torque generated at the joint.  

The aim of controller is to determine the levels of 
muscle stimulation to generate desired movement despite 
of system parameter variations, external disturbances and 
muscle fatigue. 

 
5. RESULTS 

 
 The reference trajectories of the torso, hip, and knee 

joint angles during walking and the ground reaction 
forces were obtained from an experiment with a able-
bodied subject  (male, H = 176 cm, M = 58 kg). 
Different walking trials were conducted each with about 
10 strikes. To avoid transient effects, the measured data 
during the first three strides and the last two strides were 
not considered for simulation. The joint angles were 
measured by using the motion tracker system MTx 
(Xsens Technologies, B.V.) which is a small and 
accurate 3DOF Orientation Tracker.  The ground 
reaction forces were recorded by pedar-x system (novel) 
which is an accurate and reliable pressure distribution 
measuring system for monitoring local loads between the 
foot and the shoe. The data were recorded at 100 Hz. The 
hip acceleration was calculated by using the kinematic 
data. 

 The mean absolute error (MAE) was calculated as a 
measure of tracking accuracy as follows: 

( ) 
= =

+=−=−=
n

j

n

j

HK
d
HHH

d
KKK eeejxjx

n
ejxjx

n
e

1 1

    2   ,)()(
1

   ,)()(
1

where n  is the number of samples, d
Kx  and  d

Hx  are 

the desired values of knee and hip joint angles, 
respectively. 

 The control objective is to design a control law to 
force the system state variables (i.e., joint angles Kx  

and Hx ) to track the desired state trajectories d
Kx  and 

d
Hx   in the presence of model uncertainties, external 

disturbances, and time-varying properties of the 
neuromusculoskeletal system. 

 The average of total muscle activities (ATMA) was 
calculated to measure the energy expenditure as follows: 

( ) ,100)()()()(
4

1
ATMA

1

×















+++= 

=

T

t

f
H

f
H

e
K

f
K tatatata

T

 
where ia  represents the muscle activity of each muscle 

and T  is the duration of walking simulation (i.e., five 
strides). 

 The system described by (25) is used as a virtual 
patient. To implement the AFSMC, the musculoskeletal 
system should be presented in a standard canonical form 
as: 

uxGxFx ⋅+= )()(  

where T
HHKK xxxx ]   [ =x  are vector of joint angles and 

angular velocities and T
HK uutu ] [)( =  is the control 

outputs of the hip and knee joints. Control of flexor and 
extensor muscles across each joint is accomplished by 
switching the stimulation signal between two muscle 
groups as   



 >

=
         

(t) u(t)    u
(t)u iiflexor

i otherwise0

0if





−
>

=
otherwise    )(

0)( if           0 
)(

tu

tu
tu

i

iextensor
i        HKi ,=  

The system functions )(xF  and )(xG  are unknown 

and estimated online by fuzzy logic system presented in 
3.2 without any offline calibration. The controller 
parameters are chosen heuristically to achieve the best 
controller performance during simulation studies. In this 
study, we choose parameters of the proposed controller 
as the following: 

45.0==
iki gf ηη , 0.1  0 =ε , 0

ikgif == εε , 6.00 =δ , 

38i =λ , 10k0i = , 185 k1i = , 10)0()0( .θθ
ikgif == ,for 

2 1,, =ki . 
 

5.1. Trajectory tracking 
Fig. 2(a) shows the results of the adaptive fuzzy 

sliding mode control of walking in a virtual subject. It is 
observed that excellent tracking performance can be 
achieved with acceptable switching activity in the control 
input. Interesting observation is the fast convergence of 
the proposed control strategy. The joint angle trajectories 
converge to the desired trajectory after about 200 ms. It 
should be noted that the values of model parameters (1) 
is identified online without any offline identification and 
offline calibration.  

The values of MAE are 
,0.74  0.90 °±°=Ke ,0.51  0.81 °±°=He .85.0 °=e  The 

maximum values of absolute error are ,85.4max °=Ke  

°= 44.2maxHe . The tracking errors obtained here are 

comparable with the results obtained using optimal 
control used in [16] when the weighting factor1 λ  set to 
0 (Table 1). However, the ATMA obtained by using 
proposed AFSMC is about 14.65% which is 30.24% less 
than that obtained by the optimal control. Increasing the 
weighting factor reduces the agonist and antagonist 
activations but increases the tracking errors. It is 
observed that by setting λ  to 0.001, the performance of 
optimal control has degraded, MAE increases to ,76.5 °  
and ATMA decreases to 15.44% (Table 1). In this case, 
the maximum of the absolute error on hip joint is 

°79.24  which may cause falling and high energy 
consumption during walking.  

                                                           
1In [24], a cost function was selected as the sum of the squares of 
the tracking errors from the desired trajectories, and the weighted 
sum of the squares of agonist and antagonist activations of the 
muscle groups acting around the hip and knee joints (see [24]). The 
λ  is the weight factor of the sum of the squares of muscle groups 
activations. 
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Fig. 2. Results of the human walking control using the 
proposed AFSMC: Measured (desired) and actual joint 
angle, stimulation signals of flexor and extensor muscle 
groups, and the net torque acting at the shank and thigh. 
(a) Knee joint. (b) Hip joint. (c) Ground reaction force. 

 
It should be noted that the optimal control proposed in 

[16] should be determined under the condition .0)( =tv  

In this case, the optimal controller fails to track the 
desired trajectories. 

 Fig. 3 shows the average of walking control results 
over the five gait cycles. It is observed that during 
loading response, between heel strike and opposite toe 
off, the knee and hip extensors were activated to extend 
the joints. The knee was flexed a little at the initial of 
loading response by activation of the knee flexor. The 
knee flexion during loading response contributed to 
shock absorption. During mid stance, the first half of 
single limb support (between 14% and 30% of gait cycle), 
both the hip and knee were extended by activation of 
both joint extensors. During terminal stance, the second 
half of single limb support, the knee increased its 
extension, and began to flex slightly at the end of this 
phase.  

 During pre-swing phase, between 47% and 61% of 
gait cycle, it is observed that the knee flexor was 
activated. The torque acting at the shank was positive 
which was a flexor moment.  During initial swing, 
between opposite heel-strike and toe-off, the limb 
responded with greater knee flexion by activating the 
knee flexor and loss of hip extension by activating the 
hip flexor. During initial swing which is initiated at the 
time the toe loses contact with the floor, sufficient knee 
flexion is critical for proper toe clearance during swing.  

 
 

 
Table 1. Mmean absolute tracking error (± Standard deviation), Maximum absolute tracking error and ATMA 

obtained using the proposed adaptive fuzzy sliding mode controller and the optimal controller [24]. 
  

ATMAmaxHe  maxKe  meaneHe  Ke  Conditions Method 

14.65%2.44o 4.85o 0.85o 0.81o ± 0.51o 0.90o ± 0.74oFixed-
parameter 

v(
t)

 ≠
 0

 

A
F

SM
C

 

15.83%2.82o 6.96o 0.99o 0.95 o ± 0.60o 1.02o ± 0.87oExternal 
Disturbance 

21.91%7.08o 6. 86o 1.47o 1.60o ± 1.46o 1.35o ± 1.17oTime-varying 
parameter 

24.09%4.61o 6.97o 1.02o 1.02 o ± 0.66o 1.03o ± 0.92oFatigue 

44.89%2.23o 3.46o 0.60o 0.54o ± 0.33o 0.65o ± 0.59oFixed-
parameter 

v(
t)

 =
 0

 

λ = 0 

O
p

ti
m

al
 

54.99%41.12o 24.55o 8.78o 14.32o ± 10.03o3.24o ± 2.98oTime-varying 
parameter 

15.44%24.79o 8.21o 5.76o 7.78o ± 6.25o 3.74o ± 2.49oFixed-
parameter 

λ = 0.001 

17.15%42.47o 27.33o 11.79o17.00o ± 13.25o6.57o ± 6.12oTime-varying 
parameter 
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Fig. 3. Average of walking control results over five gait cycles: Measured (desired) and actual joint angle, stimulation 
signals of flexor and extensor muscle groups, torque acting at the joint and the net torque acting at the shank and thigh. 
(a) Knee joint. (b) Hip joint. (c) Average ground reaction force. The EMG activities (horizontal black bars) were 
obtained by averaging the results reported in the literature [52], [54]. 

 
During mid swing (between 78% and 90% of gait 

cycle), the knee flexor was deactivated and its extensor 
was activated to extend the knee while the hip flexor was 
activated to increase its flexion and to advance the limb. 
The knee and hip flexors and hip extensor work 
synergistically to flex the hip from a extend position 
during swing phases. During terminal swing (between 
90% and 100% of gait cycle), the knee increased its 
extension and the hip began its extension by activation of 
the hip extensor. 

A comparison of these muscle excitation patterns to 
EMG data reported by others during normal walking is 
shown in Fig. 3 [44], [46].  The muscle excitation 
patterns generated by the controller were, for the most 
part, consistent with EMG data. 

 
5.2. Effects of External Disturbances 
To evaluate the ability of proposed control strategy to 

external disturbance rejection, a constant torque in 
amount of 150 Nm (which is about 200% of maximum 
generated torque acting at the thigh segment during 
disturbance-free trial) was applied to the thigh in 
posterior and anterior directions, at 1.3 s and at 3.75 s, 
respectively, each time for a period of 1.2 s. Anterior and 
posterior disturbances were imposed at the thigh by 
adding and subtracting a constant torque in amount of 
150 Nm to and from the torque acting at the hip, 
respectively. 

Fig. 4 shows the results of disturbance rejection. It is 
observed that during posterior disturbance, the activity of 
the hip extensor was decreased but its flexor activity was 
increased. Posterior disturbance causes not only hip 

extension but also knee extension, thus the knee flexor 
activity was increased to reject the posterior disturbance. 
During anterior disturbance which has been applied to 
the thigh during mid swing, activities of the knee 
extensor and hip flexor have been decreased but 
activities of the knee flexor and hip extensor have been 
increased. It is observed that during anterior disturbance 
the activity of hip extensor has been saturated and thus 
tracking error has been increased.  

The MAE was calculated for the whole sequence of 
walking (five consecutive strides). The results show that 
the values of MAE are ,0.87  1.02 °±°=Ke  

,0.60  0.95 °±°=He  .99.0 °=e  Comparing the results 

with that of obtained during simulated walking without 
disturbances, we see that a robust tracking performance 
and fast convergence can be achieved under external 
disturbances using proposed AFSMC. The maximum 
values of absolute error are  ,96.6max °=Ke  

°= 82.2maxHe .  

 
5.3. Effects of System Parameter Variations 
To evaluate the performance of controller under 

system parameter variations, all  muscle parameters 
)4041( , , ; k, , icik  ==  and )6021( , , ; k, idik ==  

were randomly varied %80±  from their nominal values. 
Table 1 summarizes the values of MAE and the 
maximum values of absolute error over the five 
consecutive strides. It is observed that the values of 
MAE are ,1.17  1.35 °±°=Ke .1.46  1.60 °±°=He   
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Fig. 4. Results of external disturbance rejection obtained 
using the proposed AFSMC: Measured (desired) and 
actual joint angle, stimulation signals of flexor and 
extensor muscle groups, and the  torque acting at the 
joint. (a) Knee joint. (b) Hip joint. (c) External 
disturbance profile which was applied to the hip in 
posterior and anterior directions at 1.3 s and at 3.75 s, 
respectively. 

 
The average of MAE is °47.1  during time-varying 

condition while it is °85.0 during fixed-parameter 
condition. The results indicate that the proposed control 
strategy is robust against system parameter variations. 
This interesting result indicates that the proposed control 
strategy can be used for different experiment sessions on 
different days and different subjects without any offline 
calibration of the controller and can compensate the 
time-varying properties of neuromuscular dynamics. It is 
observed that during time-varying condition, the 
performance of optimal control is significantly degraded 
(average of MAE is °78.8 ). 

 
5.4. Effects of Muscle Fatigue 
To evaluate the ability of the controller to account for 

muscle fatigue, the effects of muscle fatigue were 
simulated by an asymptotic decrease in the agonist's 
(antagonist's) muscle gain to 50% of its original value 

over 120 s. The ability of the controller to continuously 
adjust the stimulation pattern to achieve consistent 
tracking performance is demonstrated in Fig. 5. This plot 
shows the 25 strides of walking (i.e., 32.5 s). The 
recorded data from consecutive experimental trials were 
concatenated to obtain a long distance walking. It is 
observed that the stimulation patterns (Fig. 5) were 
adapted to produce the desired output torque trajectory 
from beginning of simulation. Fig. 5 demonstrates that 
the proposed AFSMC can also provide a very good 
tracking performance during muscle fatigue 
( ,0.92  1.03 °±°=Ke  ,0.66  1.02 °±°=He  °= 02.1e ). 

 
6. DISCUSSION AND CONCLUSION 

 
In this paper, a novel robust control strategy 

incorporating the SMC with strong reachability condition 
and adaptive fuzzy control has been proposed for control 
of human walking. In this design, an adaptive law was 
derived based on Lyapunov stability analysis for online 
adapting the parameters of the model so that closed-loop 
stability and asymptotic convergence to zero of tracking 
errors and its derivatives can be guaranteed. 

 The current controllers for FES applications (e.g., 
joint control and walking) require offline identification 
before they could be used to control the limbs (e.g., see 
[16]-[18], [26], [27]). The burdens of offline 
identification may hinder the clinical applications of 
motor neuroprostheses. A major contribution of the 
current study is that the proposed control scheme does 
not require offline calibration or offline identification. 
The adaptation of the model is performed online without 
requiring any offline adjustment of model parameters. 

 Simulation studies on a virtual patient demonstrated 
the exceptional performance and robustness of the 
proposed control system against system parameter 
variations, muscle fatigue, external disturbances, and 
unmodeled dynamics. The results show that the average 
of MAE is °85.0  which is nearly equal to tracking error 
obtained by the optimal control proposed in [16] with 

.0=λ  However, the average muscle groups activations 
obtained by optimal control is %89.44  which is 

%24.30  higher than that obtained by proposed AFSMC. 
 The most prominent property of the proposed 

AFSMC is its insensitivity to the plant parameter 
variations. However, it is observed that the performance 
of optimal control is significantly degraded during 
parameter variations. The MAE increases substantially to 

°78.8  and the maximum absolute error are 
,55.24max °=Ke .12.41max °=He  

Another important feature of the proposed method is 
that the state trajectories can be controlled to achieve the 
fast convergence. The knee and hip movement 
trajectories converge to the desired trajectories after 
about 200 ms. The fast convergence is the direct 
consequence of the strong reachability condition of the 
proposed control strategy. 
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Fig. 5. Results of fatigue compensation obtained using 

proposed AFSMC: Measured (desired) and actual joint 
angle, stimulation signals of flexor and extensor muscle 
groups. (a) Knee joint. (b) Hip joint.  

 
Future work will consider the exploitation of this 

strategy for the control of walking in paraplegic subjects 
that are active participants in a rehabilitation research 
program involving daily electrically stimulated exercise 
of their lower limbs (either seated or during standing and 
walking) using ParaWalk neuroprosthesis [45]. 

  
APPENDIX A 

 
Proof of Theorem 1: Consider the following 

Lyapunov function candidate: 
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The time derivative of V is 
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Substituting (22) into (3), we have 

( ) ceqeq uxGuxGuxGxGxFvs )()(ˆ)(ˆ)()( −−−−−=   (A3) 

From (22)-(24) and the fact 
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00
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ifii ff θxx =  and ),(ˆ)(ˆ **

ifikik gg θxx =  for 

m , 1,k , =i  then we can write: 
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Substituting  (A5) and (A6) into (A4), we have 
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Apply (A8) to (A2), we have 
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Substituting the parameter adaptation laws (20) and 
(21) into (A10) gives 

01 =V               (A12) 

From Assumption 1, we can write 
2
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Multiplying 
2

0

0 )(

s

uusT

δ

++ eqgf εε
 to (A13) gives 
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Then 
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T

c
T εε      (A15) 

From (A11) and (A15), 

02 ≤V              (A16) 

Substituting (A16) into (A9) leads to 

)sgn(10 sKssKs TTV −−≤         (A17) 

By using Barbalat's lemma in [33], (A17) implies 0→s  
as ∞→t . This completes the proof. 
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